A two-stage artificial bee colony algorithm scheduling flexible job-shop scheduling problem with new job insertion
نویسندگان
چکیده
This study addresses the scheduling problem in remanufacturing engineering. The purpose of this paper is to model effectively to solve remanufacturing scheduling problem. The problem is modeled as flexible job-shop scheduling problem (FJSP) and is divided into two stages: scheduling and re-scheduling when new job arrives. The uncertainty in timing of returns in remanufacturing is modeled as new job inserting constraint in FJSP. A two-stage artificial bee colony (TABC) algorithm is proposed for scheduling and re-scheduling with new job(s) inserting. The objective is to minimize makespan (maximum complete time). A new rule is proposed to initialize bee colony population. An ensemble local search is proposed to improve algorithm performance. Three re-scheduling strategies are proposed and compared. Extensive computational experiments are carried out using fifteen well-known benchmark instances with eight instances from remanufacturing. For scheduling performance, TABC is compared to five existing algorithms. For re-scheduling performance, TABC is compared to six simple heuristics and proposed hybrid heuristics. The results and comparisons show that TABC is effective in both scheduling stage and
منابع مشابه
A New model for integrated lot sizing and scheduling in flexible job shop problem
In this paper an integrated lot-sizing and scheduling problem in a flexible job shop environment with machine-capacity-constraint is studied. The main objective is to minimize the total cost which includes the inventory costs, production costs and the costs of machine’s idle times. First, a new mixed integer programming model,with small bucket time approach,based onProportional Lot sizing and S...
متن کاملOptimality of the flexible job shop scheduling system based on Gravitational Search Algorithm
The Flexible Job Shop Scheduling Problem (FJSP) is one of the most general and difficult of all traditional scheduling problems. The Flexible Job Shop Problem (FJSP) is an extension of the classical job shop scheduling problem which allows an operation to be processed by any machine from a given set. The problem is to assign each operation to a machine and to order the operations on the machine...
متن کاملAn efficient job shop scheduling algorithm based on artificial bee colony
The job shop scheduling problem (JSSP) is an NP-hard problem of wide engineering and theoretical background. In this paper, a discrete artificial bee colony based memetic algorithm, named DABC, is proposed for solving JSSP. Firstly, to make artificial bee colony (ABC) suitable for solving JSSP, we present a food source as a discrete job permutation and use the discrete operation to generate a n...
متن کاملOptimality of the flexible job shop scheduling system based on Gravitational Search Algorithm
The Flexible Job Shop Scheduling Problem (FJSP) is one of the most general and difficult of all traditional scheduling problems. The Flexible Job Shop Problem (FJSP) is an extension of the classical job shop scheduling problem which allows an operation to be processed by any machine from a given set. The problem is to assign each operation to a machine and to order the operations on the machine...
متن کاملA Hybrid Artificial Bee Colony Algorithm for Flexible Job Shop Scheduling Problems
In this paper, we propose a hybrid Pareto-based artificial bee colony (HABC) algorithm for solving the multi-objective flexible job shop scheduling problem. In the hybrid algorithm, each food sources is represented by two vectors, i.e., the machine assignment vector and the operation scheduling vector. The artificial bee is divided into three groups, namely, employed bees, onlookers, and scouts...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 42 شماره
صفحات -
تاریخ انتشار 2015